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ABSTRACT 
In this paper we speak about Cartan-Kahler Theory and Applications to exterior differential system, we have shown 

that some definitions, theorems and examples. Therefore, the results are derived from the proprieties of Cartan-Kahler 

theory and Applications to exterior differential system, with the correspondence results that derived heuristically by 

many authors. 
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     INTRODUCTION 
In this paper, we focused to discuss how problems in differential geometry and partial differential equations can often 

be reformed as problems about integral manifolds of appropriate exterior differential systems. More-over, in 

differential geometry, particularly in the theory and applications of the moving frame and Cartan's methods of the 

equivalence, the problems to be studied often appear naturally in the form of exterior differential system anyway.  

This motivates the problem of finding a general method of constructing integral manifold. When the exterior 

differential system I has a particularly simple form, standard differential calculus and the techniques of ordinary 

differential equations allow a complete (local) description of the integral manifolds of I. 
 

KÄHLER-ORDINARY AND KÄHLER-REGULAR INTEGRAL ELEMENTS 
Let Ω a differential 𝑛-form on a 𝑚-dimensional manifold 𝑀. Let 𝐺𝑛(𝑇𝑀, Ω) = {𝐸 ∈ 𝐺𝑛(𝑇𝑀)|ΩE ≠ 0}, where 

𝐺𝑛(𝑇𝑀) is the Grassmanian of 𝑇𝑀, i.e., the set of 𝑛-dimensional subspace of 𝑇𝑀. We denote by 𝒱𝑛(𝐼, Ω) = 𝒱𝑛(𝐼) ∩
𝐺𝑛(𝑇𝑀, Ω) the set of integral elements of 𝐼 on which Ω𝐸 ≠ 0. 

 

Definition (2.1): 

An integral element 𝐸 ∈ 𝒱𝑛(𝐼) is called Kähler-ordinary if there exists a differential 𝑛-form Ω such that Ω𝐸 ≠ 0. 

Moreover, if the function 𝑟 is locally constant in some neighborhood of 𝐸, then is said Kähler-regular. 

 

Example (1): 

We will show that all of the 2-dimensional integral elements of 𝐼 are Kähler-regular. Let Ω = 𝑑𝑥4 ∧ 𝑑𝑥5. Then every 

element 𝐸 ∈ 𝐺2(𝑇ℝ
5, Ω) has a basis{𝑋4, 𝑋5} of the form 

𝑋4(𝐸) = 𝜕 𝜕𝑥
4⁄ + 𝑝4

1(𝐸) 𝜕 𝜕𝑥1⁄ + 𝑝4
2(𝐸) 𝜕 𝜕𝑥2⁄ + 𝑝4

3(𝐸) 𝜕 𝜕𝑥3⁄

𝑋5(𝐸) = 𝜕 𝜕𝑥5⁄ + 𝑝5
1(𝐸) 𝜕 𝜕𝑥1⁄ + 𝑝5

2(𝐸) 𝜕 𝜕𝑥2⁄ + 𝑝5
3(𝐸) 𝜕 𝜕𝑥3⁄

.    (1) 

the functions 𝑥1, … , 𝑥5, 𝑝5
1, … , 𝑝5

3 for a coordinate system on 𝐺2(𝑇ℝ
5, Ω).Computation gives 

(𝜗1 ∧ 𝑑𝑥4)Ω = −𝑝5
1

(𝜗1 ∧ 𝑑𝑥5)Ω = 𝑝4
1 + (𝑥3 − 𝑥4𝑥5)

(𝜗2 ∧ 𝑑𝑥4)Ω = −𝑝5
2 − (𝑥3 + 𝑥4𝑥5)

(𝜗2 ∧ 𝑑𝑥5)Ω = 𝑝4
2

(𝜗3 ∧ 𝑑𝑥4)Ω = −𝑝5
3 + 𝑥4

(𝜗3 ∧ 𝑑𝑥5)Ω = −𝑝4
3 − 𝑥5

                                      (2) 
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every point of 𝒱2(𝐼) is kähler-ordinary. Since none of these elements has any extension to a 3-dimensional integral 

element, it follows that 𝑟(𝐸) = −1,∀ 𝐸 ∈ 𝒱2(𝐼). Thus, every element of 𝒱2(𝐼) is also kähler-regular. 

 

 

INTEGRAL FLAGS, ORDINARY AND REGULAR INTEGRAL ELEMENTS 
Definition (3.1) 

An integral flag of 𝐼 on 𝑧 ∈ 𝑀 of length 𝑛 is a sequence of integral elements 𝐸𝑘of 𝐼: (0)𝑧 ⊂ 𝐸1 ⊂ ⋯ ⊂ 𝐸𝑛 ⊂ 𝑇𝑧𝑀. 

 

Definition (3.2) 

Let 𝐼 be an exterior differential system on 𝑀. An integral element 𝐸 ∈ 𝒱(𝐼) is said ordinary if its base point 𝑧 ∈ 𝑀 is 

an ordinary zero of 𝐼0 = 𝐼 ∩ 𝐴
0(𝑀) and if there exists an integral flag(0)𝑧 ⊂ 𝐸1 ⊂ ⋯ ⊂ 𝐸𝑛 = 𝐸 ⊂ 𝑇𝑧𝑀 where the 

𝐸𝑘 , 𝑘 ≤ 𝑛 − 1,are Kähler-regular integral elements. Moreover, if 𝐸 is Kähler-regular, then 𝐸 is said regular. 

 

Theorem (3.2): (Cartan's Test) 

Let 𝐼 ⊂ 𝐴∗(𝑀) be an exterior ideal which doesn't contain 0-forms (functions on 𝑀). Let (0)𝑧 ⊂ 𝐸1 ⊂ ⋯ ⊂ 𝐸𝑛 ⊂ 𝑇𝑧𝑀 

be an integral flag of 𝐼. For any 𝑘 < 𝑛, we denote by 𝑐𝑘 the codimension of the polar space 𝐻(𝐸𝑘) in 𝑇𝑧𝑀. Then          

𝒱𝑛(𝐼) ⊂ 𝐺𝑛(𝑇𝑀) is at least of 𝑐0, 𝑐1, … , 𝑐𝑛−1 codimension at 𝐸𝑛. Moreover, 𝐸𝑛 is an ordinary integral flag if and only 

if 𝐸𝑛 has a neighborhood 𝑈 in 𝐺𝑛(𝑇𝑀) such that 𝒱𝑛(𝐼) ∩ 𝑈 is a manifold of 𝑐0 + 𝑐1 +⋯+ 𝑐𝑛−1 codimension in 𝑈. 

 

Example (2): Using theorem (3.2) 

We can give a quick proof the none-elements in 𝒱2(𝐼) are ordinary. For any integral flag (0)𝑧 ⊂ 𝐸1 ⊂ 𝐸2 ⊂ 𝑇𝑧ℝ
5, we 

know that 𝑐0 ≤ 2 since there are two independent 1-forms in 𝐼. Also, since 𝐸2 ⊂ 𝐻(𝐸1), it follows that 𝑐1 ≤ 3. Since 

there is unique 2-dimensional integral element at each point of ℝ5 it follows that 𝒱2(𝐼) has codimension six in 

𝐺2(𝑇ℝ
5). Since 𝑐0 + 𝑐1 < 6, it follows, by theorem (3.2), that none of the integral flags of length two can be ordinary. 

Hence there are no ordinary integral elements of dimension two. 

 

Example (3) 

Let 𝑀 = ℝ6 with coordinates 𝑥1, 𝑥2, 𝑥3, 𝑢1, 𝑢2, 𝑢3. Let 𝐼 be the differential system generated by the 2-form 

𝜗 = 𝑑(𝑢1𝑑𝑥
1 + 𝑢2𝑑𝑥

2 + 𝑢3𝑑𝑥
3) − (𝑢1𝑑𝑥

2 ∧ 𝑑𝑥3 + 𝑢2𝑑𝑥
3 ∧ 𝑑𝑥1 + 𝑢3𝑑𝑥

1 ∧ 𝑑𝑥2).                                (3) 
Of course, 𝐼 generated algebraically by the forms {𝜗, 𝑑𝜗}. Then, we have 

𝑑𝜗 = −(𝑑𝑢1 ∧ 𝑑𝑥
2 ∧ 𝑑𝑥3 + 𝑑𝑢2 ∧ 𝑑𝑥

3 ∧ 𝑑𝑥1 + 𝑑𝑢3 ∧ 𝑑𝑥
1 ∧ 𝑑𝑥2).            (4) 

We can use the theorem (3.2) to show that all of 3-dimensional integral elements of 𝐼 on which Ω = 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 
does not vanish are ordinary. Let 𝐸 ∈ 𝒱3(𝐼, Ω) be fixed with base point 𝑧 ∈ ℝ6. Let (𝑒1, 𝑒2, 𝑒3) be basis of 𝐸 which is 

dual of basis (𝑑𝑥1, 𝑑𝑥2, 𝑑𝑥3)of 𝐸∗. Let 𝐸1 be the line spanned by 𝑒1, let 𝐸2 be the 2-plane spanned by the pair {𝑒1, 𝑒2}, 
and 𝐸3 be 𝐸. Then (0)𝑧 ⊂ 𝐸1 ⊂ 𝐸2 ⊂ 𝐸3 is an integral flag. Since 𝐼 is generated by {𝜗, 𝑑𝜗}, it follows that 𝑐0 = 0. 

Moreover, since 𝜗(𝑣, 𝑒1) = 𝜏1(𝑣)where𝜏1 ≡ 𝑑𝑢1mod(𝑑𝑥
1, 𝑑𝑥2, 𝑑𝑥3), it follows that 𝑐1 = 1. Note that, since 𝐸3 ⊂

𝐻(𝐸2), it follows that 𝑐2 ≤ 3. On the hand, we have the formula 
𝜗(𝑣, 𝑒1) = 𝜏1(𝑣)

𝜗(𝑣, 𝑒2) = 𝜏2(𝑣)

𝑑𝜗(𝑣, 𝑒1, 𝑒2) = −𝜏3(𝑣)
                                                   (5) 

where in each case, 𝜏𝑘 ≡ 𝑑𝑢𝑘  mod(𝑑𝑥
1, 𝑑𝑥2, 𝑑𝑥3). Since the 1-form 𝜏𝑘 are clearly independent and annihilate 𝐻(𝐸2), 

it follows that 𝑐2 ≥ 3. Combined with the pervious argument, we have 𝑐2 = 3. It follows by theorem (3.2) that the 

codimension of 𝒱3(𝐼) in 𝐺3(𝑇ℝ
6) at 𝐸 is at least 𝑐0 + 𝑐1 + 𝑐3 = 4. Now, we shall illustrate that 𝒱3(𝐼, Ω) is smooth 

submanifold of 𝐺3(𝑇ℝ
6) of codimension four, and thence, by theorem (3.2), conclude that 𝐸 is ordinary. To do this, 

we introduce functions 𝑝𝑖𝑗 on 𝐺3(𝑇ℝ
6, Ω) with the property that, for each 𝐸 ∈ 𝐺3(𝑇ℝ

6, Ω) based at 𝑧 ∈ ℝ6, the forms 

𝜏𝑖 = 𝑑𝑢𝑖 − 𝑝𝑖𝑗(𝐸) 𝑑𝑥
𝑗 ∈ 𝑇𝑧

∗(ℝ6) are a basis for the 1-forms which annihilate 𝐸. Then the functions (𝑥, 𝑢, 𝑝) form a 

coordinate system on 𝐺3(𝑇ℝ
6, Ω). It is easy to compute that 

                      𝜗𝐸 = (𝑝23 − 𝑝32 − 𝑢1)𝑑𝑥
2 ∧ 𝑑𝑥3 + (𝑝31 − 𝑝13 − 𝑢2)𝑑𝑥

3 ∧ 𝑑𝑥1 + (𝑝12 − 𝑝21 − 𝑢3)𝑑𝑥
1 ∧

𝑑𝑥2                                                                                                  (6) 
𝑑𝜗𝐸 = −(𝑝11 + 𝑝22 + 𝑝33)𝑑𝑥

1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3.                          (7) 
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It follows that the condition that 𝐸 ∈ 𝐺3(𝑇ℝ
6, Ω) be an integral element of 𝐼 is equivalent to the vanishing of four 

functions on 𝐺3(𝑇ℝ
6, Ω) whose differentials are independent. Thus, 𝒱3(𝐼, Ω) is smooth manifold of codimension 4 in 

𝐺3(𝑇ℝ
6, Ω). 

 

Proposition (3.3): 

Let 𝐼 ∩ 𝐴∗(𝑀) an exterior ideal which don’t contains 0-forms. Let 𝐸 ⊂ 𝒱𝑛(𝐼) be an integral element of 𝐼 at the 

point 𝑧 ∈ 𝑀. Let 𝜔1, 𝜔2, … ,𝜔𝑛 , 𝜏1, 𝜏2, … , 𝜏𝑠(where 𝑠 = dim𝑀 − 𝑛) be a coframe in an open neighborhood of 𝑧 ∈ 𝑀 

such that 𝐸 = {𝑣 ∈ 𝑇𝑧𝑀|𝜏𝑎(𝑣) = 0,    ∀𝑎 = 1, … , 𝑠}. For all 𝑝 ≤ 𝑛, we define 𝐸𝑝 = {𝑣 ∈ 𝐸|𝜔𝑘(𝑣) = 0, ∀ 𝑘 > 𝑝}. 

Let {𝜑1, … , 𝜑𝑟} be the set differential forms which generate the exterior ideal 𝐼, where 𝜑𝜌 is of (𝑑𝜌 + 1) degree. For 

all 𝜌, there exists an expansion 

𝜑𝜌 = ∑ 𝜏𝜌
𝐽 ∧ 𝜔𝐽 + �̃�𝜌

|𝐽|=𝑑𝜌

                                                 (8) 

where the 1-forms 𝜏𝜌
𝐽
 are linear combinations of the𝜏's and the terms �̃�𝜌 are, either of degree 2 or more in the𝜏's or 

else vanish at 𝑧. 
Moreover, we have the formula 

𝐻(𝐸𝑝) = {𝑣 ∈ 𝑇𝑧𝑀|𝜏𝑎(𝑣) = 0,    ∀ 𝜌 and sup 𝐽 ≤ 𝑝}                 (9) 

In particular, for the integral flag (0)𝑧 ⊂ 𝐸1 ⊂ ⋯ ⊂ 𝐸𝑛 ∩ 𝑇𝑧𝑀 of 𝐼, 𝑐𝑝 is the number of the linear independent forms 

{𝜏𝜌
𝐽|
𝑧
such that sup 𝐽 ≤ 𝑝}. 

 

Theorem (3.4):(Cartan-Kähler) 

Let 𝐼 ⊂ Λ∗(𝑀) be a real analytic exterior differential ideal. Let 𝑃 ⊂ 𝑀 a 𝑝-dimensional connected real analytic Kähler-

Regular integral manifold of 𝐼. Suppose that 𝑟 = 𝑟(𝑃) ≥ 0. Let 𝑅 ⊂ 𝑀 be a real analytic submanifold of 𝑀 of 

codimension 𝑟 which contains 𝑃 and such that 𝑇𝑥𝑅 and 𝐻(𝑇𝑥𝑃) are transversals in 𝑇𝑥𝑀, ∀ 𝑥 ∈ 𝑃 ⊂ 𝑀. 

Then, there exists a (𝑝 + 1)-dimensional connected real analytic integral manifold 𝑋of 𝐼, such that 𝑃 ⊂ 𝑋 ⊂ 𝑅. 𝑋is 

unique in the sense that another integral manifold of 𝐼 having the stated properties, coincides with 𝑋 on an open 

neighborhood of 𝑃. 

 

STATEMENT AND PROOF OF CARTAN-KÄHLER 
The Cartan-kähler theorem depends on the fundamental existence theorem of Cauchy and Kowalevski dealing with 

differential equations, and Cauchy-Kowalevski theorem uses the power series method. Consequently, Cartan-kähler 

theory is a real-analytic and local theory. This theorem is a coordinate-free, geometric generalization of the classical 

Cauchy-Kowalevski theorem, which we state presently. 

We shall use the index ranges 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and  1 ≤ 𝑎, 𝑏 ≤ 𝑠. 
 

Corollary (4.1): (Cartan-Kähler) 

Let 𝐼 be an analytic exterior differential on a manifold 𝑀. If 𝐸 ⊂ 𝑇𝑧𝑀 is an ordinary integral element of 𝐼, there exists 

an integral manifold of 𝐼 passing through 𝑧 and having 𝐸 as a tangent space at the point 𝑧. 
 

Example (4): 
As a simple illustration of the Cartan-kähler theorem we consider the partial differential equation in the unknown 

function 𝑢(𝑥, 𝑦) given by 

𝜕2𝑢 𝜕𝑦2⁄ = 𝜕𝑢 𝜕𝑥⁄                                                               (10) 
onℝ6 = {(𝑥, 𝑦, 𝑢, 𝑝, 𝑞, 𝑟)} we put 

𝜗1 = 𝑑𝑢 − 𝑝 𝑑𝑥 − 𝑞 𝑑𝑦

𝜗2 = 𝑑𝑢 − 𝑝 𝑑𝑦 − 𝑟 𝑑𝑥
                                         (11) 

then the above partial differential equation translated to the closed exterior differential system on 𝑀 = ℝ6 given by 

Λ = {𝜗1, 𝜗2, 𝜔1 = 𝑑𝑝 ∧ 𝑑𝑥 + 𝑑𝑞 ∧ 𝑑𝑦,𝜔2 = 𝑑𝑝 ∧ 𝑑𝑦 + 𝑑𝑟 ∧ 𝑑𝑥}.         (12) 
Since 𝜗1 ∧ 𝜗2 ≠ 0 then, every point is a regular integral point, and 𝑠0 = 2. Fix an origin, 0 = (0, 0, 𝑢0, 𝑝0, 𝑞0, 𝑟0) ∈
𝑀. To find an integral sub manifold 

𝑔(𝑥) = (𝑥, 0,Φ1(𝑥),… , Φ4(𝑥))                                     (13) 
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we must solve 

𝜕𝑢 𝜕𝑥⁄ = 𝑝,         𝑑Φ1 𝑑𝑥⁄ = Φ2,

𝜕𝑞 𝜕𝑥⁄ = 𝑟,          𝑑Φ3 𝑑𝑥⁄ = Φ4
                                     (14) 

with 𝑢 = 𝑢0, 𝑞 = 𝑞0at 𝑥 = 0. Let Φ1 and Φ3 be arbitrary real-analytic functions in 𝑥 such that Φ1(0) =
𝑢0andΦ

3(0) = 𝑞0. (We can specify 𝑢 and 𝜕𝑢 𝜕𝑢⁄ along 𝑦 = 0). Now, we have 𝑔(𝑥). By taking a tangent vector 

𝑣 = (1, 0, 𝑣𝑢 , 𝑣𝑝, 𝑣𝑞 , 𝑣𝑟) ∈ 𝑀0.                                   (15) 

Then the equations 𝜗1(𝑣) = 𝜗2(𝑣) = 0implies 𝑣𝑢 = 𝑝0, 𝑣𝑞 = 𝑟0. The dual polar space of 𝐸0
1 = [𝑣] is spanned by 

𝜗1, 𝜗2 and the two 1-forms 
𝑖𝑣𝜔1 = 𝑣𝑝 𝑑𝑥 − 𝑑𝑝 + 𝑟0 𝑑𝑦

𝑖𝑣𝜔2 = 𝑣𝑟  𝑑𝑥 − 𝑑𝑟 + 𝑟𝑝 𝑑𝑦
                                      (16) 

the polar matrix of these four 1-forms with respect to(𝑑𝑥, 𝑑𝑦, 𝑑𝑢, 𝑑𝑝, 𝑑𝑞, 𝑑𝑟) is 

[

𝑝0
𝑟0
𝑣𝑝

𝑞0
𝑝0
𝑟0

1
0
0

0
0
−1

0
−1 
 0 

   
0
0
0

𝑣𝑟 𝑣𝑝 0  0    0 −1

]                                   (17) 

this matrix has rank four for any quadruple (𝑝0, 𝑟0, 𝑣𝑝, 𝑣𝑟). In particular, 

𝑠0 + 𝑠1 = 4, 𝑠1 = 2, 
and 𝜎2 = 0. Therefore, there exists a unique solution 

𝑓(𝑥, 𝑦) = (𝑥, 𝑦, 𝐹1(𝑥, 𝑦),… , 𝐹4(𝑥, 𝑦)), with 𝑓(𝑥, 0) = 𝑔(𝑥). (18) 
 

PROLONGATION 
Roughly speaking, the prolongations of a differential system are the differential system obtained by adjoining to the 

original differential system its differential consequences. The concept of prolongation tower, which will be defined 

below, gives an abstract formulation of the operation of the prolongation. A general conjecture of  ElieCartan, [2], 

proved by Kuranishi, [3], for a wide class of differential systems, state that an analytic differential system with 

independence condition it's takes a finite number of prolongations for it to be either involutive or incompatible, or has 

no solutions. This result is known as Cartan-Kuranishi Theorem. The proof of Cartan's conjecture has been given 

under a different set of hypotheses in the treatise [1]. Our purpose is to review some of the basic aspects of the 

prolongation theorem. We assume that all manifolds and the differential systems under consideration are of class 𝐶𝜔. 

The prolongation tower of an exterior differential system with independence condition (𝐼, Ω) on an 𝑛-dimensional 

manifold 𝑀 is defined as a follows. Let 𝑓:𝑊𝑝 → 𝑀 be an immersion and let 𝑓∗:𝑊𝑝 → 𝐺𝑝(𝑀) denote the map into the 

Grassmann bundle of 𝑝-planes in 𝑇𝑀 determined by 𝑓. The Grassmann bundle 𝐺𝑝(𝑀) is endowed with a canonical 

exterior differential system 𝐶(1) defined the property that 𝑓∗
∗𝐶(1) = 0 for any immersion 𝑓:𝑊𝑝 → 𝑀. Using affine 

fiber coordinates (𝑥𝑖, 𝑢𝛼, 𝑢𝑖
𝛼), 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝛼 ≤ 𝑛, on Grassmann bundle 𝐺𝑝(𝑀), the system 𝐶(1) is defined as the 

differential ideal generated by the 1-form 

𝜗𝛼 = 𝑑𝑢𝛼 −∑𝑢𝑖
𝛼𝑑𝑥𝑖

𝑝

𝑖=1

.                                                    (19) 

We choose component 𝑉𝑝(𝐼) of the sub-variety of 𝐺𝑝(𝑀) defined by the 𝑝-dimensional admissible integral elements 

of 𝐼 and assume 𝑉𝑝(𝐼) to be 𝐶𝜔 manifold. 

 

Definition (5.1): 

The first prolongation of 𝐼 is the exterior differential system 𝐼(1) defined by 

𝐼(1) = 𝐶(1)|
𝑉𝑝(𝐼)

                                                 (20) 

For notational simplicity, we use the notation 𝑀1 to denote the 𝑉𝑝(𝐼). We also assume that the map 𝜋1,0: (𝑀(1), 𝐼(1)) →
(𝑀, 𝐼) is a 𝐶𝜔 submersion. The prolongation tower of 𝐼 is then defined by induction, 

⋯
𝜋𝑘+1,𝑘

→    (𝑀(𝑘), 𝐼(𝑘))
𝜋𝑘,𝑘−1

→    ⋯
𝜋2,1

→  (𝑀(1), 𝐼(1))
𝜋1,0

→  (𝑀, 𝐼).        (21) 

The infinite prolongation (𝑀(∞), 𝐼(∞)) of (𝑀, 𝐼) is then defined as the inverse limit of this tower 
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𝑀(∞) ∶= lim
⟵
𝑀(𝑘) , 𝐼(∞) =⋃𝐼(𝑘)

𝑘≥0

.              (22) 

We now present a statement of prolongation theorem as given in [7] 

 

Theorem (5.2): 

There exists an integer 𝑘 such that for all 𝑙 ≥ 𝑘, each of these systems (𝐼(𝑙), Ω(𝑘)) is involutive. Furthermore, if 𝑀(𝑘) 

is empty for some 𝑘 ≥ 1, then (𝐼, Ω) has no 𝑛-dimensional integral manifolds. 

 

Example (5): 

Consider the system of partial differential equations of a single variable 𝑢 = 𝑢(𝑥, 𝑦, 𝑧) defined on ℝ3 

𝑢𝑥𝑥 = 𝑢𝑦𝑦 = 𝑢𝑧𝑧.                                    (21) 

Following the general procedure for transformation P.D.E. into exterior differential equations, the space we are 

working with is hence formed by the following variables 

o 𝑢 (1 variable); 

o 𝑥, 𝑦, 𝑧 (3 variables); 

o 𝑢𝑥 , 𝑢𝑦, 𝑢𝑧 (3 variables); 

o 𝑢𝑥𝑥 = 𝑢𝑦𝑦 = 𝑢𝑧𝑧 , 𝑢𝑥𝑦 = 𝑢𝑦𝑥 , 𝑢𝑥𝑧 = 𝑢𝑧𝑥 , 𝑢𝑦𝑧 = 𝑢𝑧𝑦 (4 variables). 

So the differential equation is defined on an 11-dimensional space formed by the variables above. The solution we 

seek for is a 3-dimensional integral manifold for which 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 ≠ 0, i.e., there are 8 variables that need to 

become dependent on 𝑥, 𝑦, 𝑧. The contact forms are 

{
 
 

 
 𝜔𝑢 = 𝑑𝑢 − 𝑢𝑥𝑑𝑥 − 𝑢𝑦𝑑𝑦 − 𝑢𝑧𝑑𝑧        

𝜔𝑥 = 𝑑𝑢𝑥 − 𝑢𝑥𝑥𝑑𝑥 − 𝑢𝑥𝑦𝑑𝑦 − 𝑢𝑥𝑧𝑑𝑧

𝜔𝑦 = 𝑑𝑢𝑦 − 𝑢𝑥𝑦𝑑𝑥 − 𝑢𝑦𝑦𝑑𝑦 − 𝑢𝑦𝑧𝑑𝑧

𝜔𝑧 = 𝑑𝑢𝑧 − 𝑢𝑥𝑧𝑑𝑥 − 𝑢𝑦𝑧𝑑𝑦 − 𝑢𝑧𝑧𝑑𝑧

                     (22) 

which are set to zero. Recall that the zeros Cartan character 𝑠0 is the number of the equations for which any linear 

integral elements of the system must be satisfied while ignoring the 𝑑𝑥, 𝑑𝑦, 𝑑𝑦, i.e., it is the rank of the matrix 

(

  
 

𝑑𝑢 𝑑𝑢𝑥 𝑑𝑢𝑦 𝑑𝑢𝑧 𝑑𝑢𝑥𝑥 𝑑𝑢𝑥𝑦 𝑑𝑢𝑦𝑧 𝑑𝑢𝑧𝑥

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0)

  
 
(23) 

derived from the contact 1-forms, where the first row not part of the matrix. Obviously, this number is always equal 

to the number of independent 1-form equations above (since we are not allowed to have linear independence among 

the independence variables), and here we have 𝑠0 = 4, even without forming the matrix explicitly. 

Under exterior differentiation we have 

{
 
 

 
 𝑑𝜔𝑢 = −𝑑𝑢𝑥 ∧ 𝑑𝑥 − 𝑑𝑢𝑦 ∧ 𝑑𝑦 − 𝑑𝑢𝑧 ∧ 𝑑𝑧        

𝑑𝜔𝑥 = −𝑑𝑢𝑥𝑥 ∧ 𝑑𝑥 − 𝑑𝑢𝑥𝑦 ∧ 𝑑𝑦 − 𝑑𝑢𝑥𝑧 ∧ 𝑑𝑧  

𝑑𝜔𝑦 = −𝑑𝑢𝑥𝑦 ∧ 𝑑𝑥 − 𝑑𝑢𝑦𝑦 ∧ 𝑑𝑦 − 𝑑𝑢𝑦𝑧 ∧ 𝑑𝑧  

𝑑𝜔𝑧 = −𝑑𝑢𝑥𝑧 ∧ 𝑑𝑥 − 𝑑𝑢𝑦𝑧 ∧ 𝑑𝑦 − 𝑑𝑢𝑧𝑧 ∧ 𝑑𝑧  

        (24) 

Then, we will use the equations 𝜔𝑢 = 𝜔𝑥 = 𝜔𝑦 = 𝜔𝑧 = 0, which give expressions for 𝑑𝑢, 𝑑𝑢𝑥 , 𝑑𝑢𝑦, 𝑑𝑢𝑧 to simplify 

these equations. Then, we get 

{
 

 
𝑑𝜔𝑢 = 0                                                                       
𝑑𝜔𝑥 = −𝑑𝑢𝑥𝑥 ∧ 𝑑𝑥 − 𝑑𝑢𝑥𝑦 ∧ 𝑑𝑦 − 𝑑𝑢𝑥𝑧 ∧ 𝑑𝑧  

𝑑𝜔𝑦 = −𝑑𝑢𝑥𝑦 ∧ 𝑑𝑥 − 𝑑𝑢𝑦𝑦 ∧ 𝑑𝑦 − 𝑑𝑢𝑦𝑧 ∧ 𝑑𝑧  

𝑑𝜔𝑧 = −𝑑𝑢𝑥𝑧 ∧ 𝑑𝑥 − 𝑑𝑢𝑦𝑧 ∧ 𝑑𝑦 − 𝑑𝑢𝑧𝑧 ∧ 𝑑𝑧  

       (25) 

Therefore 𝑠1, we give 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 the values 𝜀1𝑥, 𝜀1𝑦, and 𝜀1𝑧 respectively, and 𝑠0 + 𝑠1 the rank of the matrix 
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(

 
 
 
 
 
 

  𝑑𝑢 𝑑𝑢𝑥 𝑑𝑢𝑦 𝑑𝑢𝑧 𝑑𝑢𝑥𝑥 𝑑𝑢𝑥𝑦 𝑑𝑢𝑦𝑧 𝑑𝑢𝑧𝑥

1         0          0          0           0            0           0         0 
0         1          0          0           0            0           0         0 
  0         0          1          0           0            0           0         0   
0         0          0          1           0            0           0         0 
0         0          0          0         𝜀1𝑥          𝜀1𝑦       0       𝜀1𝑧  
 0         0          0          0         𝜀1𝑦          𝜀1𝑥      𝜀1𝑧      0
  0         0          0          0         𝜀1𝑧           0         𝜀1𝑦    𝜀1𝑥 )

 
 
 
 
 
 

    (26) 

and we have 𝑠0 + 𝑠1 = 7, hence 𝑠1 = 3. Then, for 𝑠2, we form the matrix 

(

 
 
 
 
 
 
 
 
 
 

𝑑𝑢 𝑑𝑢𝑥 𝑑𝑢𝑦 𝑑𝑢𝑧 𝑑𝑢𝑥𝑥 𝑑𝑢𝑥𝑦 𝑑𝑢𝑦𝑧  𝑑𝑢𝑧𝑥

1         0          0          0           0            0           0         0 
0         1          0          0           0            0           0         0 
  0         0          1          0           0            0           0         0   
0         0          0          1           0            0           0         0 
   0         0          0          0         𝜀1𝑥          𝜀1𝑦       0       𝜀1𝑧  
0         0          0          0         𝜀1𝑦          𝜀1𝑥      𝜀1𝑧       0 
0         0          0          0         𝜀1𝑧           0         𝜀1𝑦    𝜀1𝑥 

  
 0 
0
0
        

0
0
0
          

0
0
0
          

0
0
0
         

𝜀2𝑥
𝜀2𝑦
ε2z
          

𝜀2𝑦
𝜀2𝑥
0
       

0
𝜀2𝑧
ε2y
       

𝜀2𝑧 
0

ε2x
 )

 
 
 
 
 
 
 
 
 
 

      (27) 

The rank is 8, so 𝑠2 = 1. Note that the matrix has already attained its maximal rank, so 𝑠3 = 0. Obviously if we remove 

the first four columns, which can be non-zero only for the first four rows since we must enforce the 1-form equations, 

then we can calculate more easily the numbers 𝑠1, 𝑠1 + 𝑠2, etc., which correspond to the ranks of the series of the 

matrices stacked together. 

 

Then, we can apply Cartan's test. This corresponds to sitting𝜀1𝑦 = 𝜀1𝑧 = 𝜀2𝑥 = 𝜀2𝑧 = 0 above, and then the 

characters can be read of directly from the 2-form equations as 

𝑠1 = 3(𝑑𝑢𝑥𝑥 , 𝑑𝑢𝑥𝑦, 𝑑𝑢𝑥𝑧), 𝑠2 = 1(𝑑𝑢𝑦𝑧), 𝑠3 = 0. (28) 

𝑠1corresponding to the independent forms which multiply 𝑑𝑥, shown in parentheses, etc. Note that this shortcut works 

also when we have higher order forms in our equations as long as the differentials of dependent variables enter only 

linearly, i.e., we don’t have terms such as 

𝑑𝑢𝑥𝑥 ∧ 𝑑𝑢, 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑢𝑥 ∧ 𝑑𝑢𝑦. 

If such forms are present, we cannot use this shortcut and the calculation of even the reduced characters become very 

difficult, since first we need to find the general 3-dimensional linear elements, which is already more difficult since 

now there would be quadratic or higher order relations among the parameters, and then calculate using the elements, 

the steps of calculation required being roughly quadratic in the total number of variables. Actually in such a case, 

unless the number of variables is exceedingly small, a better way to proceed is to immediately effect a prolongation 

so as to get rid of all of the original higher order form equations, and the new systems is guaranteed to include only 

linear forms in the dependent variables. 

We want to see the free parameters in an integral element 

{
 
 

 
 𝑑𝑢𝑥𝑥 = 𝑢𝑥𝑥𝑥𝑑𝑥 + 𝑢𝑥𝑥𝑦𝑑𝑦 + 𝑢𝑥𝑥𝑧𝑑𝑧

𝑑𝑢𝑥𝑦 = 𝑢𝑥𝑦𝑥𝑑𝑥 + 𝑢𝑥𝑦𝑦𝑑𝑦 + 𝑢𝑥𝑦𝑧𝑑𝑧

𝑑𝑢𝑥𝑧 = 𝑢𝑥𝑧𝑥𝑑𝑥 + 𝑢𝑥𝑧𝑦𝑑𝑦 + 𝑢𝑥𝑧𝑧𝑑𝑧

𝑑𝑢𝑦𝑧 = 𝑢𝑦𝑧𝑥𝑑𝑥 + 𝑢𝑦𝑧𝑦𝑑𝑦 + 𝑢𝑦𝑧𝑧𝑑𝑧

                 (29) 

The above expression holds 12 parameters. Substituting this back to the two form equations, we see that the free 

parameters are 
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{

𝑢𝑥𝑥𝑥 = 𝑢𝑥𝑦𝑦 = 𝑢𝑥𝑧𝑧
𝑢𝑥𝑥𝑦 = 𝑢𝑥𝑦𝑥 = 𝑢𝑦𝑧𝑧
𝑢𝑥𝑥𝑧 = 𝑢𝑥𝑧𝑥 = 𝑢𝑦𝑧𝑦
𝑢𝑥𝑦𝑧 = 𝑢𝑥𝑧𝑦 = 𝑢𝑦𝑧𝑥

                                       (30) 

so here the numbers of free parameters (N = 4), actually, even this substitution is unnecessary, since it is obvious that 

the free parameters are just the independent third order partial derivatives ofu. We have 

𝑁 = 4 < 𝑠1 + 2𝑠2 + 3𝑠3 = 5,                  (31) 
So Cartans test fails, the system is not involutive and prolongation is necessary. We can also see where things could 

go wrong as we laboriously wrote down the matrices: the real characters would correspond to matrices whose top-row 

labels include also 𝑑𝑥, 𝑑𝑦, 𝑑𝑧. Now already at 𝑠2, the rank of the reduced polar matrix is already constrained by the 

number of columns, and if we have more columns the rank could grow further, and consequently imply linear 

dependence among 𝑑𝑥, 𝑑𝑦, 𝑑𝑧, which at the same time will imply the existence of further constraints on the free 

parameters in the integral element than implied by the counting of reduced Cartan characters. If this happens, which 

is the present case, it shows that the reduced character and real characters are not equal, and we are not in the involutive 

case. Prolongation corresponds, on the other hand, adding to the labels 𝑑𝑢𝑥𝑥 , 𝑑𝑢𝑥𝑦, 𝑑𝑢𝑥𝑧 , 𝑑𝑢𝑦𝑧, so we will not be 

constrained by the number of columns so soon. 

Now, for prolongation we take 𝑢𝑥𝑥𝑥, 𝑢𝑥𝑥𝑦, 𝑢𝑥𝑥𝑧, 𝑢𝑥𝑦𝑧to be the new variables, adjoining (29) to the list of one-form 

equations (hence for the prolonged system, 𝑠0 = 4+ 4 = 8), and we need to differentiate (29) to get some new two 

forms equations (the original one are now all identities). We now have 11 + 4 = 15variables, and the number of 

variables that we want to get rid of is 12. We have 

{
 
 

 
 
𝑑2𝑢𝑥𝑥 = 𝑑𝑢𝑥𝑥𝑥 ∧ 𝑑𝑥 + 𝑑𝑢𝑥𝑥𝑦 ∧ 𝑑𝑦 + 𝑑𝑢𝑥𝑥𝑧 ∧ 𝑑𝑧

𝑑2𝑢𝑥𝑦 = 𝑑𝑢𝑥𝑥𝑦 ∧ 𝑑𝑥 + 𝑑𝑢𝑥𝑥𝑥 ∧ 𝑑𝑦 + 𝑑𝑢𝑥𝑦𝑧 ∧ 𝑑𝑧

𝑑2𝑢𝑥𝑧 = 𝑑𝑢𝑥𝑥𝑧 ∧ 𝑑𝑥 + 𝑑𝑢𝑥𝑦𝑧 ∧ 𝑑𝑦 + 𝑑𝑢𝑥𝑥𝑥 ∧ 𝑑𝑧

𝑑2𝑢𝑦𝑧 = 𝑑𝑢𝑥𝑦𝑧 ∧ 𝑑𝑥 + 𝑑𝑢𝑥𝑥𝑧 ∧ 𝑑𝑦 + 𝑑𝑢𝑥𝑥𝑦 ∧ 𝑑𝑧

          (32) 

For this new system, the reduced characters are 

𝑠1 = 4 (𝑑𝑢𝑥𝑥𝑥 , 𝑑𝑢𝑥𝑥𝑦, 𝑑𝑢𝑥𝑥𝑧 , 𝑑𝑢𝑥𝑦𝑧), 𝑠2 = 0, 𝑠3 = 0.   (33) 

So 𝑠0 + 𝑠1 + 𝑠2 + 𝑠3 = 12, the number of dependent variables, as it should be. 

 For completeness, we give the polar matrix for calculating 𝑠2 of which we have removed the columns 

corresponding to 𝑑𝑢, 𝑑𝑢𝑥 , 𝑑𝑢𝑦, 𝑑𝑢𝑧 , 𝑑𝑢𝑥𝑥 , 𝑑𝑢𝑥𝑦, 𝑑𝑢𝑥𝑧, 𝑑𝑢𝑦𝑧 

(

 
 
 
 
 
 

𝑑𝑢𝑥𝑥𝑥 𝑑𝑢𝑥𝑥𝑦 𝑑𝑢𝑥𝑥𝑧 𝑑𝑢𝑥𝑦𝑧

𝜀1𝑥 𝜀1𝑦 𝜀1𝑧 0
𝜀1𝑦
𝜀1𝑧
0
𝜀2𝑥
𝜀2𝑦
𝜀2𝑧
0

𝜀1𝑥
0
𝜀1𝑧
𝜀2𝑦
𝜀2𝑥
0
𝜀2𝑧

0
𝜀1𝑥
𝜀1𝑦
𝜀2𝑧
0
𝜀2𝑥
𝜀2𝑦

𝜀1𝑧
𝜀1𝑦
𝜀1𝑥
0
𝜀3𝑧
𝜀3𝑦
𝜀3𝑥 )

 
 
 
 
 
 

                               (34) 

For the parameters, 

{
 
 

 
 𝑑𝑢𝑥𝑥𝑥 = 𝑢𝑥𝑥𝑥𝑥𝑑𝑥 + 𝑢𝑥𝑥𝑥𝑦𝑑𝑦 + 𝑢𝑥𝑥𝑥𝑧𝑑𝑧

𝑑𝑢𝑥𝑥𝑦 = 𝑢𝑥𝑥𝑦𝑥𝑑𝑥 + 𝑢𝑥𝑥𝑦𝑦𝑑𝑦 + 𝑢𝑥𝑥𝑦𝑧𝑑𝑧

𝑑𝑢𝑥𝑥𝑧 = 𝑢𝑥𝑥𝑧𝑥𝑑𝑥 + 𝑢𝑥𝑥𝑧𝑦𝑑𝑦 + 𝑢𝑥𝑥𝑧𝑧𝑑𝑧

𝑑𝑢𝑥𝑦𝑧 = 𝑢𝑥𝑦𝑧𝑥𝑑𝑥 + 𝑢𝑥𝑦𝑧𝑦𝑑𝑦 + 𝑢𝑥𝑦𝑧𝑧𝑑𝑧

               (35) 

again there are 12 of them. The free ones can be algorithmically obtained by substituting these expressions into the 

two form equations, and we have 

{

𝑢𝑥𝑥𝑥𝑥 = 𝑢𝑥𝑥𝑦𝑦 = 𝑢𝑥𝑥𝑧𝑧
𝑢𝑥𝑥𝑥𝑦 = 𝑢𝑥𝑥𝑦𝑥 = 𝑢𝑥𝑦𝑧𝑧
𝑢𝑥𝑥𝑥𝑧 = 𝑢𝑥𝑥𝑧𝑥 = 𝑢𝑥𝑦𝑧𝑦
𝑢𝑥𝑥𝑦𝑧 = 𝑢𝑥𝑥𝑧𝑦 = 𝑢𝑥𝑦𝑧𝑥

                                         (36) 

so the number of free parameters is 𝑁 =  4. Again, this substitution can be avoided by noting that the free parameters 

are just the independent fourth order partial derivatives of u. Now 
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𝑁 = 4 = 𝑠1 + 2𝑠2 + 3𝑠3,                 (37) 
So Cartans test is satisfied, the system is involutive, and the general solution of the differential equation depends on 

four functions of one variable, by the Cartan–Kähler theorem. 

 

CONCLUSIONS 
As a conclusion, in this paper we discussed the Cartan– Kähler theorem and Applications to exterior differential 

system. Our main tools, is the quantum mechanics of exterior differential system. We have shown that our results 

coincide with previous results obtained by several authors. Our last observation was that, we can use the prolongation 

tower of an exterior differential system with independence condition (𝐼, Ω) on an 𝑛-dimensional manifold 𝑀 is defined 

to solve differential equation depends on four functions of one variable, by the Cartan–Kähler theorem. 
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